Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
Output
output print L - the length of the greatest common increasing subsequence of both sequences.
Sample Input
1 5 1 4 2 5 -12 4 -12 1 2 4
Sample Output
2
题意:求最长递增公共子序列的长度
思路:直接模板
#include#include #include using namespace std;int n,m,a[505],b[505],dp[505][505];int LICS(){ int MAX,i,j; memset(dp,0,sizeof(dp)); for(i = 1; i<=n; i++) { MAX = 0; for(j = 1; j<=m; j++) { dp[i][j] = dp[i-1][j]; if(a[i]>b[j] && MAX
上面的虽然可以解决,但是二维浪费空间较大,我们注意到在LICS函数中有一句dp[i][j] = dp[i-1][j],这证明dp数组前后没有变化!于是可以优化成一维数组!
#include#include #include using namespace std;int a[505],b[505],dp[505],n,m;int LICS(){ int i,j,MAX; memset(dp,0,sizeof(dp)); for(i = 1; i<=n; i++) { MAX = 0; for(j = 1; j<=m; j++) { if(a[i]>b[j] && MAX